Analytic Number Theory >> Content Detail

Study Materials


Amazon logo Help support MIT OpenCourseWare by shopping at! MIT OpenCourseWare offers direct links to to purchase the books cited in this course. Click on the Amazon logo to the left of any citation and purchase the book from, and MIT OpenCourseWare will receive up to 10% of all purchases you make. Your support will enable MIT to continue offering open access to MIT courses.

The recommended texts for this class are:

Amazon logo Davenport, H., and H. L. Montgomery. Multiplicative Number Theory. New York, NY: Springer-Verlag, 2000. ISBN: 9780387950976.

Amazon logo Iwaniec, Henryk, and Emmanuel Kowalski. Analytic Number Theory. Providence, RI: American Mathematical Society, 2004. ISBN: 9780821836330.

In the table below, they are referred to as "Davenport" and "Iwaniec", respectively, followed by the section number.

1Introduction to the course; the Riemann zeta function, approach to the prime number theorem

The Prime Number Theorem (PDF)

Davenport: 8 and 18.

Iwaniec: 5.4 and 5.6.

2Proof of the prime number theoremSee Lec #1
3Dirichlet series, arithmetic functions

Dirichlet series and arithmetic functions (PDF)

Iwaniec: 1.

4Dirichlet characters, Dirichlet L-series

Dirichlet characters and L-functions (PDF)

Davenport: 4.

Iwaniec: 2.3.

5Nonvanishing of L-series on the line Re(s)=1See Lec #4
6Dirichlet and natural density, Fourier analysis; Dirichlet's theorem

Primes in arithmetic progressions (PDF)

Davenport: 4.

Iwaniec: 2.3 and 3.2.

7Prime number theorem in arithmetic progressions; functional equation for zeta

See Lec #6

The functional equation for the Riemann zeta function (PDF)

Davenport: 20, 22, and 8.

Iwaniec: 4.6 and 5.6.

8Functional equation for zeta (cont.)See Lec #7
9Functional equations for Dirichlet L-functions

Functional equations for Dirichlet L-functions (PDF)

Davenport: 9.

Iwaniec: 4.6.

10Error bounds in the prime number theorem; the Riemann hypothesis

Error bounds in the prime number theorem (PDF)

Davenport: 17.

11Zeroes of zeta in the critical strip; a zero-free region

More on the zeroes of zeta (PDF)

Davenport: 11 and 13.

12A zero-free region; von Mangoldt's formula

See Lec #11

von Mangoldt's formula (PDF)

Davenport: 17.

13von Mangoldt's formula (cont.)See Lec #12
14von Mangoldt's formula; error bounds in arithmetic progressions

See Lec #12

Error bounds in the prime number theorem in arithmetic progressions (PDF)

Davenport: 14 and 19.

Iwaniec: 5.4 and 5.6.

15Error bounds in arithmetic progressions (cont.)See Lec #14
16Introduction to sieve methods: the sieve of Eratosthenes

Revisiting the sieve of Eratosthenes (PDF)

Iwaniec: 6.1 and 6.2.

17Guest lecture by Professor Ben GreenNo readings
18The sieve of Eratosthenes (cont.); Brun's combinatorial sieve

See Lec #16

Brun's combinatorial sieve (PDF)

Iwaniec: 6.2 and 6.3.

19Brun's combinatorial sieve (cont.)See Lec #18
20The Selberg sieve

The Selberg sieve (PDF)

Iwaniec: 6.5.

21The Selberg sieve (cont.); applying the Selberg sieve

See Lec #20

Applying the Selberg sieve (PDF)

Iwaniec: 6.6-6.8.

22Introduction to large sieve inequalities

Introduction to large sieve inequalities (PDF)

Davenport: 27.

Iwaniec: 7.3 and 7.4.

23A multiplicative large sieve inequality; an application of the large sieve

A multiplicative large sieve inequality (PDF)

Davenport: 27.

Iwaniec: 7.5.

24The Bombieri-Vinogradov theorem (statement)

The Bombieri-Vinogradov theorem (statement) (PDF)

Davenport: 28.

Iwaniec: 17.1-17.4.

25The Bombieri-Vinogradov theorem (proof)

The Bombieri-Vinogradov theorem (proof) (PDF)

Davenport: 28.

Iwaniec: 17.1-17.4.

26The Bombieri-Vinogradov theorem (proof, cont.)See Lec #25
27The Bombieri-Vinogradov theorem (proof, cont.); prime k-tuples

See Lec #25

Prime k-tuples (PDF)

28Short gaps between primes

Small gaps between primes (after Goldston-Pintz-Yildirim) (PDF)

Soundararajan Article

Goldston, et al. Article

29Short gaps between primes (cont.)See Lec #28
30Short gaps between primes (proofs)

Small gaps between primes (proofs) (PDF)

See Lec #28

31Short gaps between primes (proofs, cont.)See Lec #30
32Short gaps between primes (proofs, cont.)See Lec #30
33Artin L-functions and the Chebotarev density theoremArtin L-functions and the Chebotarev density theorem (PDF)
34Artin L-functionsSee Lec #33
35Equidistribution in compact groupsThe Sato-Tate distribution (PDF)
36Elliptic curves; the Sato-Tate distribution

See Lec #35

Elliptic curves and their L-functions (PDF)


© 2009-2020, All Rights Reserved.
Higher Ed Space ® is a registered trademark of AmeriCareers LLC.