Numerical Methods for Partial Differential Equations (SMA 5212) >> Content Detail

Calendar / Schedule


This calendar lists the lecture topics for the course, the instructor in charge of each lecture, and assignment due dates. Most lectures were delivered at MIT, and video-casted live to the National University of Singapore (NUS). Some lectures were delivered at NUS, and video-casted live to MIT. In rare circumstances, students watched a taped lecture.

1OverviewJ. Peraire
2Finite Differences: Elliptic ProblemsJ. Peraire
3Finite Differences: Elliptic ProblemsJ. Peraire
4Finite Differences: Parabolic ProblemsB. C. Khoo
5Finite Differences: Eigenvalue, 2D ProblemsJ. Peraire
6Solution Methods: Iterative MethodsJ. Peraire
7Solution Methods: Multigrid MethodsJ. Peraire
8Finite Differences: Hyperbolic ProblemsJ. Peraire
9Finite Differences: Hyperbolic ProblemsJ. PeraireFD Assignment Due
10Finite Volumes: Linear ProblemsJ. Peraire
11Finite Volumes: Conservation LawsJ. Peraire
12Finite Volumes: Nonlinear ProblemsJ. Peraire
13Finite Elements: Variational FormulationA. T. Patera
14Finite Elements: Poisson 1D -- IA. T. PateraFV Assignment Due
15Finite Elements: Poisson 1D -- IIA. T. Patera
16Finite Elements: Poisson 2D -- IA. T. Patera
17Finite Elements: Poisson 2D -- IIA. T. Patera
18Finite Elements: General Elliptic Problems -- OverviewA. T. Patera
19Finite Elements: Parabolic Problems, Eigenvalue ProblemsA. T. Patera
20Integral Equations: DerivationJ. White
21Integral Equations: Collocation and Galerkin MethodsJ. White
22Integral Equations: Convergence Theory -- 2nd KindJ. WhiteFE Assignment Due
23Integral Equations: Quadrature and CubatureJ. White
24Integral Equations: Nystrom MethodsJ. White
25Integral Equations: Convergence Theory -- 1st KindJ. White
26Integral Equations: Fast SolversJ. WhiteBI Assignment Due



© 2009-2020, All Rights Reserved.
Higher Ed Space ® is a registered trademark of AmeriCareers LLC.